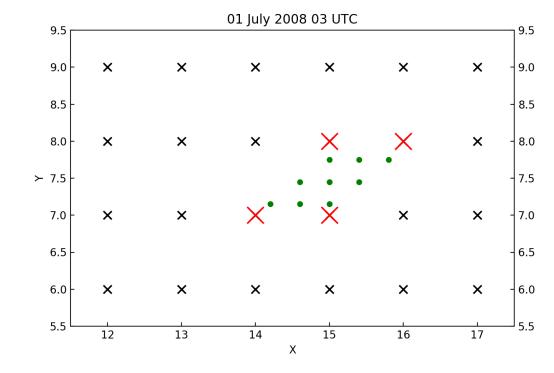
A Comparison of MERRA-2 Cloud Water Data with Deep Convective Cloud Object Data over Tropical Oceans

David P. Duda, Seiji Kato, Kuan-man Xu, William Smith, Jr.

Motivation

• Cloud systems (cloud objects) are influenced by the environmental conditions in which they form.

 How does the variability of temperature and humidity in the Tropics relate to macro-physical cloud properties and consequently the radiative heating rate profiles within a cloud system?


• First step: Comparison of cloud top height derived from cloud object and MERRA-2 cloud water fraction data

Some information about histograms and scatterplots

- All MERRA-2-derived object averages are the average of all unique MERRA-2 grid points closest to each cloud object footprint.
- All cloud object-derived object averages are the average of all cloud object footprints.

Selected MERRA-2 points: red crosses

Cloud object footprints: green dots

Some information about histograms and scatterplots

 Unless otherwise specified, comparisons include all cloud objects regardless of time difference between cloud object observation and MERRA-2 analysis time (time difference may be as large as 90 minutes)

Cloud object data presented here are from Edition 2 CERES data

Methods to measure cloud top pressure

• CEP: Cloud effective pressure from cloud object data (CERES retrievals)

- CEP2: Cloud effective pressure estimated from MERRA-2 cloud water fraction (cloud water fraction cloud optical depth radiative transfer approx.
 brightness T from radiance effective pressure from effective T)
- SNDPRS: Cloud top pressure estimated from MERRA-2 sounding (EL: equilibrium level)

CEP2 – cloud effective pressure estimated from MERRA-2 cloud water fraction

SNDPRS – cloud top estimated from EL

Compute cloud effective temperature using discretized non-scattering radiative transfer equation:

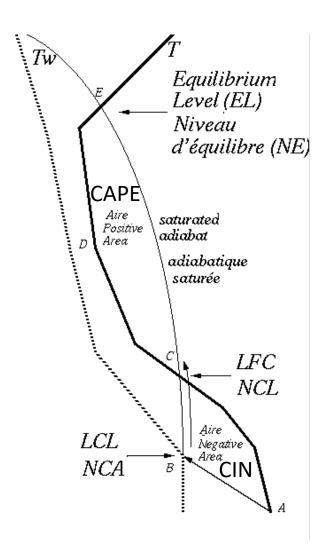
$$U_1 = B(T_0) \exp(-\Delta \tau) + B(T_1)(1 - \exp(-\Delta \tau))$$

 U_1 — Upward radiance from top of layer 1

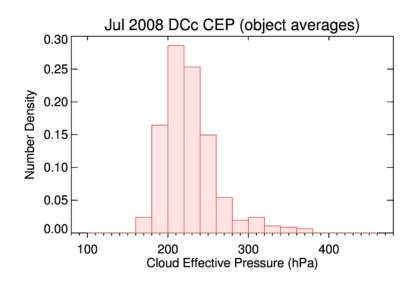
 $B(T_0)$ – Emitted radiance from level 0 upward into layer 1

 $(\Delta \tau)$ – Optical thickness of layer 1

 $B(T_1)$ – Upward emittance from layer 1

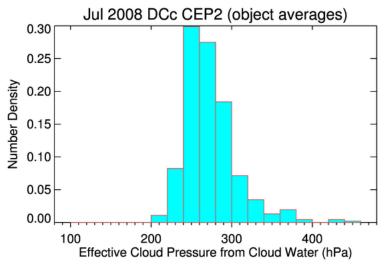

 $\exp(-\Delta \tau)$ – Transmittance of layer 1

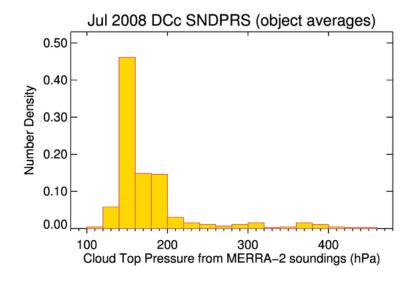
 $(1 - \exp(-\Delta \tau))$ – Emissivity of layer 1

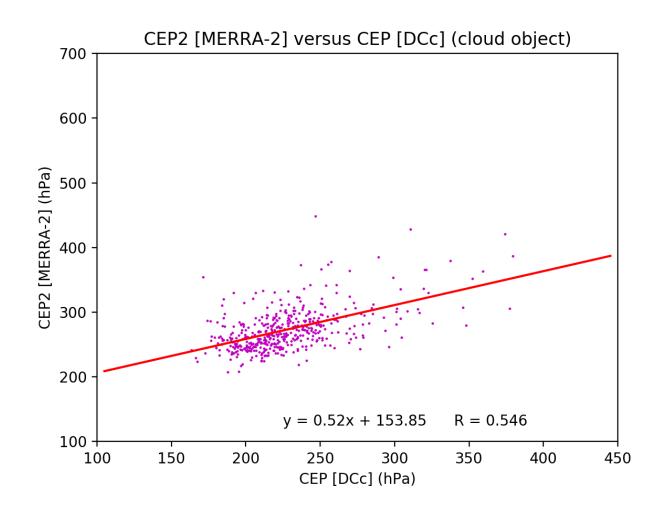

Upward radiance converted to effective temperature via Planck function ($\lambda=11~\mu m$). Effective pressure estimated from effective temperature from MERRA-2 sounding.

Cirrus visible optical depth (Heymsfield et al. (2003, JAM))

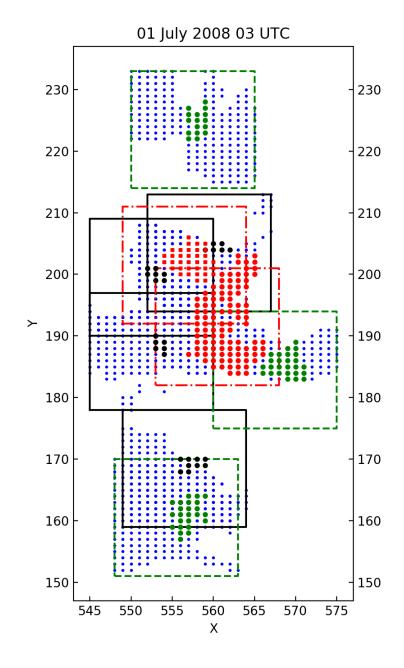
$$\begin{split} \tau_v &= 9.31 \times 10^{-3} \times IWP (in~gm^{-2}) \big[1 + 71.7 \times \big(1/r_{ge} \big) \big] \\ r_{ge} &= 1.11 \times IWP^{0.56} \quad \text{(tropical cirrus effective radius)} \\ \sim &2 \times \tau_{IR} = \tau_v \end{split}$$

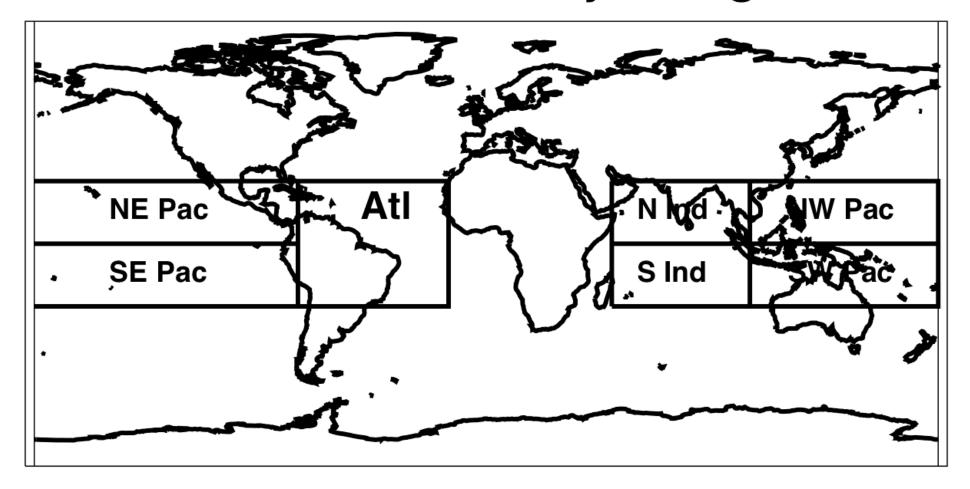



Object average histograms



Equivalent diameter: > 300 km

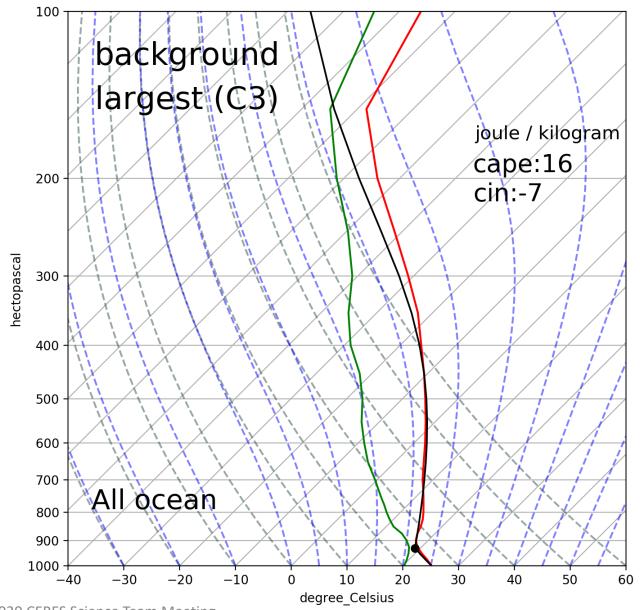

Object average scatter plots


No improvement in correlations when selecting cloud object observations within 15 minutes of MERRA-2 analysis time.

Cloud objects often appear in clusters

- Nine cloud objects [4 small [Dca] objects, 3 medium [DCb] objects,
 2 large [DCc] objects
- Blue dots represent MERRA-2 grid points where cloud water path (between 650 100 hPa) is greater than 50 g m⁻² ($\tau_{\rm v}$ = 2)
- Selected MERRA-2 points: in-cloud
- Points where cloud water path < 50 g m⁻²: background

Oceanic cloud object regions



Cloud Object Size Categories

Category	Equivalent Cloud Object Diameter (km)	Number of cloud objects in this study/ Number of MERRA-2 profiles (in cloud)/ Number of MERRA-2 profiles (background)
A (small)	75 - 150	395 / 3,267 / 42,511
B (medium)	150 - 300	447 / 8,968 / 45,533
C1 (large)	300 - 450	165 / 8,007 / 15,119
C2 (larger)	450 - 650	110 / 10,336 / 9,015
C3 (largest)	≥ 650	80 / 16,416 / 3,078

Mean profile derived from MERRA-2 in-cloud points

Mean profile of surrounding MERRA-2 grid points (within $\pm 5^{\circ}$ of cloud object) where cloud water path is < 50 g m⁻²

Summary and Future Work

- Monthly distribution of cloud effective pressure in deep convective cloud objects derived from MERRA-2 analyses (CEP2) is comparable to the cloud effective pressure retrieved from cloud object data (CEP). However, only a weak correlation found between scatter plots of CEP and CEP2 for individual cloud objects.
- Deep convective objects often have considerable overlapping of cirrus anvils. Mean MERRA-2 profiles within cloud objects are consistently more unstable and more humid than surrounding cloud-free regions, and cirrus anvils of largest cloud objects can fill most of the 10×10 deg grid boxes surrounding the cloud object.
- Compare MERRA-2-derived effective cloud height (CEP2) with CALIPSO data for large deep convective cloud objects.